GS-Scale: Unlocking Large-Scale 3D Gaussian Splatting
Training via Host Offloading

Donghyun Lee
Seoul National University
Seoul, Republic of Korea
eudh1206@snu.ac.kr

Jae W. Lee
Seoul National University
Seoul, Republic of Korea
jaewlee@snu.ac.kr

Abstract

The advent of 3D Gaussian Splatting has revolutionized
graphics rendering by delivering high visual quality and fast
rendering speeds. However, training large-scale scenes at
high quality remains challenging due to the substantial mem-
ory demands required to store parameters, gradients, and
optimizer states, which can quickly overwhelm GPU mem-
ory. To address these limitations, we propose GS-Scale, a fast
and memory-efficient training system for 3D Gaussian Splat-
ting. GS-Scale stores all Gaussians in host memory, transfer-
ring only a subset to the GPU on demand for each forward
and backward pass. While this dramatically reduces GPU
memory usage, it requires frustum culling and optimizer
updates to be executed on the CPU, introducing slowdowns
due to CPU’s limited compute and memory bandwidth. To
mitigate this, GS-Scale employs three system-level optimiza-
tions: (1) selective offloading of geometric parameters for fast
frustum culling, (2) parameter forwarding to pipeline CPU
optimizer updates with GPU computation, and (3) deferred
optimizer update to minimize unnecessary memory accesses
for Gaussians with zero gradients. Our extensive evaluations
on large-scale datasets demonstrate that GS-Scale signif-
icantly lowers GPU memory demands by 3.3-5.6x, while
achieving training speeds comparable to GPU without host
offloading. This enables large-scale 3D Gaussian Splatting
training on consumer-grade GPUs; for instance, GS-Scale
can scale the number of Gaussians from 4 million to 18 mil-
lion on an RTX 4070 Mobile GPU, leading to 23-35% LPIPS
(learned perceptual image patch similarity) improvement.

CCS Concepts: - Computer systems organization; s Com-
puting methodologies — Computer vision; Virtual reality;

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS °26, Pittsburgh, PA, USA

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2359-9/2026/03
https://doi.org/10.1145/3779212.3790167

Dawoon Jeong
Seoul National University
Seoul, Republic of Korea
daun20211@snu.ac.kr

Hongil Yoon
Google
Mountain View, CA, USA
hongilyoon@google.com

Keywords: 3D Gaussian Splatting; CPU Offloading; GPU

ACM Reference Format:

Donghyun Lee, Dawoon Jeong, Jae W. Lee, and Hongil Yoon. 2026.
GS-Scale: Unlocking Large-Scale 3D Gaussian Splatting Training
via Host Offloading. In Proceedings of the 31st ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS °26), March 22-26, 2026,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3779212.3790167

1 Introduction

Differentiable rendering methods [25, 44, 45, 63] have signif-
icantly improved the rendering quality and computational
efficiency of novel view synthesis. Among these innovations,
3D Gaussian Splatting (3DGS) [25] has emerged as a state-
of-the-art technique, offering high visual quality and fast
rendering by representing a 3D scene with millions of train-
able 3D Gaussian primitives.

However, the increasing demand for reconstructing larger
and more visually detailed 3D scenes has led to a significant
surge in the number of Gaussians required during train-
ing [32, 37, 39, 40, 55, 65], pushing the limit of GPU memory.
For example, in Rubble [57] scene, reaching the highest vi-
sual quality requires about 40 million Gaussians resulting
in 53 GB of GPU memory, far exceeding the capacity of any
single consumer-grade GPU. These high memory demands
present a major obstacle to scaling the number of Gaussians
in 3DGS training, leading to reduced scene expressiveness
and, consequently, degraded rendering quality.

Recent works [32, 37, 65] have addressed these challenges
through distributed training across multiple GPUs. However,
such multi-GPU setups entail high hardware costs and con-
siderable maintenance complexity, making them impractical
for most users. This limitation is particularly critical in per-
sonal or small-scale professional settings, where 3DGS is of-
ten applied to reconstruct scenes from user-provided images,
such as VR hobbyists [2, 3, 6] modeling personal spaces, 3D
content creators [59] building virtual environments, interior
designers designing 3D virtual rooms [1, 53], and real estate
professionals supporting 3D virtual tours [5]. Thus, enabling

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779212.3790167
https://doi.org/10.1145/3779212.3790167
https://doi.org/10.1145/3779212.3790167

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

GPU-Only %

4M Gaussians

GS-Scale
18M Gaussians
PSNRT: 27.21
ssimt: 0.8383 &
LPIPS!: 0.145

Figure 1. Comparison of the maximum rendering quality
achievable in 3DGS training using a GPU-only system and
GS-Scale. Training is conducted on RTX 4070 Mobile GPU
with Rubble scene. Higher is better for PSNR and SSIM, lower
is better for LPIPS.

high-quality 3DGS training on a single consumer-grade GPU
is essential for accessible deployment.

We present GS-Scale, a fast, memory-efficient, and scal-
able 3D Gaussian Splatting training system built upon host
(CPU) offloading. Our key observation is that in each training
iteration, only a small subset of Gaussian parameters par-
ticipates in forward and backward passes. Leveraging this
property, GS-Scale stores all Gaussian parameters and opti-
mizer states in host memory, transferring only the necessary
subset to the GPU on demand. While this approach dramati-
cally reduces GPU memory usage, it forces computationally
intensive frustum culling and memory intensive optimizer
updates onto the CPU, leading to significant slowdowns due
to limited compute power and memory bandwidth of CPU.
To address these challenges, GS-Scale incorporates three
system-level optimizations:

o Selective Offloading: Only geometric attributes of pa-
rameters are kept on GPU for fast frustum culling,
while the rest are offloaded to host memory.

e Parameter Forwarding: By pre-updating only necessary
parameters, this optimization breaks the dependency
between CPU optimizer updates and GPU forward &
backward passes, enabling pipelining.

e Deferred Optimizer Update: By deferring updates for
Gaussians with zero gradients, the amount of mem-
ory accesses is substantially reduced while achieving
identical training results.

Through extensive evaluations across various datasets
and platforms, we demonstrate that GS-Scale can train much
larger scenes on consumer-grade GPUs while maintaining
training speeds comparable to GPU without host offloading.
For example, GS-Scale can scale the number of Gaussians
from 4 million to 18 million on an RTX 4070 Mobile GPU,
yielding a 35.3% improvement in LPIPS for the Rubble scene
(Figure 1).

Our contributions are summarized as follows.

e We empirically observe a sparse workload characteris-
tic: during each training iteration, only a small subset

Donghyun Lee, Dawoon Jeong, Jae W. Lee, and Hongil Yoon

of Gaussian parameters is involved in the forward and
backward passes.

e We analyze GPU memory bottlenecks in 3DGS training
and identify host-offloading opportunities based on
this sparse workload characteristics.

e We propose GS-Scale, a fast, memory efficient, and
scalable training system for 3DGS. To the best of our
knowledge, GS-Scale is the first host offloading based
training system for 3DGS.

e We implement GS-Scale on top of gsplat [61] library
and comprehensively evaluate the performance on
various datasets and GPU platforms. GS-Scale demon-
strates substantial GPU memory savings and compara-
ble training speed with GPU without host offloading,
unlocking large-scale 3DGS training.

2 Background
2.1 Novel View Synthesis

Novel view synthesis generates photorealistic 3D scene im-
ages from previously unseen viewpoints using a set of 2D im-
ages captured from multiple viewpoints. It has broad applica-
tions in diverse fields such as virtual reality (VR) [11, 18, 24],
augmented reality (AR) [9, 64], and digital twins [20]. Tra-
ditional explicit 3D reconstruction methods using meshes,
voxels, or point clouds often struggle with complex visual
phenomena and suffer quality degradation from incomplete
or inaccurate reconstructions. Differentiable rendering meth-
ods have recently emerged, offering substantial improve-
ments in reconstruction fidelity and rendering quality. The
following sections describe them.

2.2 Neural Radiance Fields (NeRF)

Neural Radiance Fields (NeRF) [44] has revolutionized the
field of novel view synthesis by modeling 3D scenes with
implicit neural representations, overcoming limitations of
explicit 3D methods. NeRF models a scene with Multi-Layer
Perceptrons (MLPs) that map 3D position and viewing direc-
tion to volume density and view-dependent color. Rendering
samples points along camera rays, predicts colors and den-
sity for each point with the MLP, and accumulates them to
compute the final pixel color via a classical volume rendering.
Training optimizes MLP-based 3D scene representations by
minimizing the difference between the rendered images and
the corresponding ground-truth images.

NeRF and its variants [8, 19, 45, 57] have achieved a signif-
icant breakthrough in novel view synthesis, demonstrating
superior quality. However, its dependence on MLP leads
to high computational cost in both training and rendering,
limiting its deployment in latency-sensitive applications.

2.3 3D Gaussian Splatting

3D Gaussian Splatting [25] is state-of-the-art differentiable
rendering method representing 3D scenes with trainable 3D

GS-Scale : Unlocking Large-Scale 3D Gaussian Splatting Training via Host Offloading

@ Periodic ,"
Densification’

@ Sorting
—_—

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

depth

ég@ T

@ Loss
Computation

) |]
Viewp)] T L(be], D
o L L
. [' Renderin Ground truth Rendered
G”;Eigf::s 3D Gaussians 2D Gaussians ® 9 Image Image
® Parameter |
Update (® Gradient Propagation

Figure 2. Overview of 3D Gaussian Splatting Training Pipeline.

Gaussian primitives. Each 3D Gaussian has 59 parameters:
center position mean € R3, scale € R* controlling its spatial
extent, rotation represented by quaternion € RY, opacity
that determines transparency, and spherical harmonics (SH)
coefficients which encodes view-dependent color. The SH
models how a point’s color changes with viewing direction;
A common degree of L = 3 yields 16 coeflicients per color
channel and 48 parameters in total for RGB.

3DGS renders images by projecting 3D Gaussians onto
a 2D plane and accumulating colors in depth order. The
training process minimizes the difference between rendered
images and ground-truth images via backpropagation (refer
to Section 2.4). Unlike NeRF, 3DGS uses an explicit repre-
sentation, eliminating the need for MLP computation during
rendering and training, leading to faster speeds and higher
visual quality. However, this explicit representation signifi-
cantly increases the number of required parameters, leading
to a much higher memory footprint for both rendering and
training. The number of Gaussians directly determines the
parameter count. More Gaussians are necessary for higher
rendering quality, increasing memory pressure.

2.4 Training Pipeline of 3D Gaussian Splatting

The 3D Gaussian Splatting pipeline, illustrated in Figure 2,
begins with 3D Gaussians that are initialized based on a 3D
point cloud obtained from Structure-from-Motion (SfM) [54].

Training iteratively performs following seven key steps.
@ 3D Gaussians (ellipsoids) are projected onto the image
plane, producing 2D Gaussians (ellipses). Gaussians outside
the near and far planes of the viewing frustum are excluded
from projection (frustum culling). Projection of 3D Gaus-
sians consists of two steps. First, the geometric parameters
of each 3D Gaussian (i.e., 3D mean, scale, quaternion) are
transformed into its 2D counterparts (2D mean and covari-
ance matrix). Second, the RGB color of each 2D Gaussian
is computed from the spherical harmonics coefficients and
the current view direction. After the projection, frustum
culling is performed again, excluding 2D Gaussians outside
the image boundaries from subsequent processing. @ The
resulting 2D Gaussians are sorted by depth to ensure cor-
rect occlusion ordering. @ The color of depth sorted 2D
Gaussians are blended to produce the final rendered image
by using the same classical volume rendering equation as

SSIM PSNR LPIPS I Parameter Opt. State
i Gradient Activation
2751 —=a10.85 100
i '/I/ =
i A 0.80 & e
27.0(d+ &1 @ 8
S5 g 0.75 g
S el)
o 3: © A T 60H |] |] a
Z26.5{ %141 $
@ gy ! 0.30 o
i o 401 |—f —1 H
i 0.25
26.0 : @ 2
! 020 =
i o £ 20
[— [
[0.15 s
25.5(i 0
I
0 10M 20M 30M 40&10 1K 2K 4K
Number of Gaussians Image Resolution
(a) Effect of the Number of Gaus- (b) Breakdown of GPU Mem-
sians on Rendering Quality ory Usage

Figure 3. Scaling Challenges and Memory Bottleneck Anal-
ysis on 3D Gaussian Splatting Training.

NeRF. @ The difference between the rendered image and
the corresponding ground-truth image is computed to pro-
duce the loss value. @ The gradients of this loss are back-
propagated. @ The backpropagated gradients are used to
update the 3D Gaussian parameters. @) Periodically (e.g., ev-
ery 100 iterations), 3DGS performs densification, adaptively
controlling Gaussian density to improve scene representa-
tion quality. Gaussians with large accumulated gradients are
split or cloned to capture fine details, while insignificant,
low-opacity Gaussians are pruned. This step stops after a
predefined iteration threshold.

3 Motivation
3.1 Scaling Challenges in 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) demands significantly more
memory than NeRF-based methods due to its explicit scene
representation. This memory pressure intensifies during
training, consuming over four times the memory of the
Gaussian parameters due to the need to store gradients, two
optimizer states per parameter (momentum and variance
in case of Adam optimizer), and additional activation mem-
ory. As demonstrated in Figure 3a, increasing the number
of Gaussians improves rendering quality, but the GPU mem-
ory limit restricts 3DGS scalability. A single RTX 4080 Su-
per GPU can train about 9 million Gaussians, limiting the

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

Total Gaussians I Active Gaussians

o
o
o
<

Number of
Gaussians
N
o
o
=<

12.6% 10.6% 6.4% 8.9% 8.9% 2.3%
Rubble Building LFLS SzZIT SZTU Aerial

Figure 4. Average Number of Gaussians Used while Training
Compared to Total Gaussians.

PSNR to 26.67 on Rubble scene. This limitation is critical
given that 3D Gaussian Splatting is frequently used to train
user-captured personalized 3D scenes, which often relies on
consumer-grade GPUs with limited memory capacity.

3.2 Memory Bottleneck Analysis in Training

Figure 3b shows a detailed breakdown of GPU memory usage
with varying image resolutions measured on Building [57]
scene. We observe that Gaussian parameters, gradients, and
optimizer states account for around 90% of the total mem-
ory usage, while activations, used during forward and back-
ward propagation, only comprise around 10%. This trend
becomes even more pronounced when lower image resolu-
tions are used because activation size scales with the number
of rendered pixels. Considering that 1K to 4K resolutions
are commonly used in 3DGS [39, 40, 55, 57, 65], reducing
GPU memory usage requires targeting the Gaussian-related
components rather than activations.

3.3 Opportunities of Host Offloading

A unique characteristic of 3D Gaussian Splatting training
pipeline is that only Gaussians within the viewing frustum
are used for rendering (forward propagation), loss compu-
tation, and backward propagation. Our profiling results in
Figure 4 show that each training iteration utilizes only 8.28%
of total Gaussians on average in large-scale scenes. Most
training stages operate on a small subset of Gaussians, ex-
cept for frustum culling, which needs access to all Gaussians,
and optimizer updates, which update all parameters and
optimizer states. This insight suggests offloading all Gauss-
ian parameters and optimizer states to host (CPU) memory,
transferring only necessary data to GPU memory on demand
to significantly save GPU memory.

3.4 Challenges in Host Offloading

While conceptually simple, offloading Gaussian parameters
and optimizer states to host memory introduces several sig-
nificant challenges as described below.

Challenge 1: Frustum culling is slow on the CPU. Iden-
tifying Gaussians within the viewing frustum requires pro-
cessing the entire set of Gaussians. Accurate frustum culling
requires projecting each 3D Gaussian onto the 2D image

Donghyun Lee, Dawoon Jeong, Jae W. Lee, and Hongil Yoon

aL/00

Host Memory CPU PCle GPU GPU Memory
my v \ .
opt. state Optimizer

paramgy,

param

Figure 5. Baseline GS-Scale with Host Offloading.

plane to determine whether it lies within the image bound-
aries. Performing this compute-intensive operation on the
CPU, with its significantly lower FLOPS compared to a GPU,
introduces substantial overhead.

Challenge 2: Slow optimizer updates on CPU due to low
CPU memory bandwidth and inefficient nature of Adam
optimizer. Adam [29], which is the most widely used op-
timizer in 3DGS [25, 61, 65], updates all parameters and
optimizer states including those with zero gradients since
its momentum terms remain nonzero even when the gra-
dients are zero (refer to Equation 1). Thus, all parameters
and optimizer states must be updated by CPU, regardless of
whether the corresponding Gaussians were involved in for-
ward/backward propagation since GPU memory cannot hold
them all. Given that optimizer updates are memory-bound
and CPU memory bandwidth is typically much lower than
GPU memory, this leads to considerable training slowdown.

Challenge 3: Peak memory usage is bound by the most
demanding training image. Although only the Gaussians
within the viewing frustum of each training image are fetched
on demand, the peak memory usage is determined by the
image that requires the largest number of Gaussians. Even if
most training images activate a small subset of Gaussians, a
single image with an exceptionally large coverage (i.e., image
seen from a far viewpoint) can dominate the peak memory
requirement, limiting the effectiveness of host offloading.

4 GS-Scale Design

This section introduces GS-Scale, our novel system designed
to overcome the three challenges in the host offloading. GS-
Scale leverages strategic host offloading combined with sev-
eral system-level optimizations to enable efficient and scal-
able 3D Gaussian Splatting training on commodity GPUs.

4.1 Baseline GS-Scale with Host Offloading

To the best of our knowledge, no prior work has explored
host (CPU) offloading to reduce GPU memory usage in 3D
Gaussian Splatting training. Thus, we first implement a base-
line training system that offloads Gaussians to host mem-
ory. This baseline does not apply the specific optimizations
proposed in Section 4.2. Figure 5 illustrates the system. All

GS-Scale : Unlocking Large-Scale 3D Gaussian Splatting Training via Host Offloading

[spherical harmonics (48) + opacity (1) [Weiaht [Opt. state] Gradient] Curr. Iter
mean (3) + scale (3) + quaternion (4) [WeGhtIOPISEENGaaent] Next /ter

@ Frustum Culling @ Host to Device -~~~
valid_ids 01 —

WIEEZ A
Frustum Culling S | W3EE === 17
T

TO < FA
WA === e VA
W2 == OL_;_;_;_;LJJJ
W3 = P I .
WA =7 Ok>>>::m
O GPU
T Forward &
Backward

Host CPU

Figure 6. Training Iteration in Baseline GS-Scale.

Gaussian parameters and optimizer states reside in host mem-
ory. Only the necessary Gaussians are transferred to GPU
memory via a PCle interconnect for forward and backward
passes, with gradients then sent back to the CPU for opti-
mizer updates.

Training Process: Figure 6 illustrates the training iteration
of the baseline GS-Scale, and Figure 9b shows the correspond-
ing execution timeline. The memory state at each timestamp
(i-e., To, T1, T5) in Figure 6 is a snapshot of the system at the
corresponding point in time shown in Figure 9b. @ Training
begins with CPU-based frustum culling identifying Gaus-
sians within the training image’s viewing frustum (Gaussian
#1 and #3). This step relies solely on spatial relationships,
thus only geometric parameters, i.e., mean, scale, quaternion,
are used (refer to the hatched area). @ The IDs of the selected
Gaussians are stored in valid_ids, and the corresponding
parameters (i.e., W1, W3) are transferred to GPU memory
via PCle. (t = Ty). @) Forward and backward passes are per-
formed on the GPU (t = T;). @ The gradients (i.e., G1, G3)
are transferred back to the CPU. @) Adam optimizer updates
all Gaussian parameters and states on the CPU (¢ = T). Note
that Adam optimizer also updates Gaussian parameters that
do not receive gradients (i.e., W2, W4) because their corre-
sponding optimizer states (i.e., 02, O4) can remain nonzero.
As shown in Figure 6, updated weights and optimizer states
are highlighted for clarity.

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

B CPU Frustum Culling
[Device to Host

B Host to Device GPU Fwd/Bwd
I CPU Optimizer Update Misc

Rubble

Building

0 20 40 60 80 100
Training Time Breakdown (%)

Figure 7. Training Time Breakdown of Baseline GS-Scale
Measured on RTX 4070 Mobile GPU.

Performance Challenges: Despite reducing GPU memory,
this baseline system incurs significant training time over-
head, making around 4x slower than GPU-only training.
Figure 7 presents its training time breakdown, measured on
a laptop with an RTX 4070 Mobile GPU. As discussed in
Section 3.4, the primary bottlenecks are frustum culling and
optimizer updates, both executed on the host CPU.

e Slow Frustum Culling on CPU (@): The CPU has signif-
icantly lower compute capability (52X less peak FLOPS
on ASUS TUF Gaming F17 laptop) compared to the
GPU, making the compute-intensive frustum culling a
major bottleneck when performed on CPU.

e Slow Optimizer Updates on CPU (@): The CPU’s mem-
ory bandwidth is 3X slower than the GPU’s, which
turns memory-intensive optimizer updates into a ma-
jor bottleneck when executed on the CPU.

e GPU Idle Time Due to Dependency (€, @): A depen-
dency exists between GPU-based forward/backward
propagation and CPU-based optimizer updates, caus-
ing the GPU to remain idle for a significant amount of
time during CPU execution.

4.2 GS-Scale Optimizations

To address these bottlenecks, we will explore various system-
level optimization opportunities in the subsequent sections.
These optimizations leverage the unique characteristics of
the 3D Gaussian Splatting training pipeline (Section 3.3).

4.2.1 Selective Offloading. To mitigate the CPU-based
frustum culling bottleneck, we propose selective offloading,
moving this operation to the GPU. Since only the position
and the size of Gaussians (i.e., mean, scale, quaternion) are
needed to determine visibility within the viewing frustum,
only the geometric attributes of all parameters are kept on
the GPU for fast frustum culling. The geometric attributes
comprise only 10 out of 59 Gaussian parameters, resulting
in a modest 17% GPU memory overhead. This is a worth-
while trade-off for significantly faster GPU-based frustum
culling and reduced training time. Also, the non-geometric
attributes (83%) are offloaded to host memory, still achieving
considerable memory saving.

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

Training lteration N-1

Training lteration N+1

Gauss.
Gauss Gauss.

Gauss

#3 #1

Gauss.

1

1

1

:

1

| Gauss.Gauss.
1

:

1

! #4
1

] spherical harmonics (48) + opacity (1) Weight [Opt. state[Gradient] /ter N-1
mean (3) + scale (3) + quaternion (4) [Weight [Opt. state[Gradient] /ter N

Iter N+1
1@ Update for ———— gy P o -
o ostto | WARAW3EA
Next lteration valid_ias[I2] | =27 = | W2AZIWALZ |
T OO | 74
81,:: 01:HH<<J|W“ ¢ 01033
I ——— (| i ¢ ¢ ¢ ¢ ¢l z m‘
T} P wermm, Idle QY@@
0 WA | o3) | !
Wl L==55%1| Parameter, .
W. : [| ina! i
Wi Q4= forwardmg: :

r @ CPU Optimizer— Wiy

Update OGPU | Wy

ki 2
[[oEEmTT]|| Forward &

Backward

k2 Frr.r.r.7]
T! I—" Optirlﬂzer] =OZ%
W1 i

1 PGl
|| @M.S.Q
O
Waeoo) | === | Optimizer poamne L
Wabme] |O4===|| Update |Lgy Dplimizer,
— @ CPU Optimizer O Frustum WIEZAW3ER
Update : Frustum | |W2mEWAER
p Culling X
G ¥ 1 OB] Culling o1 Ed oz
G4 [‘H“‘IlaDeviceto = =
TZI r o1 Host valid_ids [1]4] 02-04-
[a— rererare| (€} | s
Wi o3 | e e eererereree
W2 e s B] e
WI3FEEtr oy G2EE===F Gz
WAG = 1|[valid_ids [1]4] |G2E21
———@CPU Optimjzer Update """~~~ WABEIW3ER!
SO vaid_ies[il4] | W2mmWam
. | o122 o3
G1 I [| ! B2 OO
|:Gs|>>,“| Ussrsrseses| 1 02-04-}
T?: I"‘ Optimizer / Ozp—z—z—z—e—q | Idle = -:
Wi o= i !
WoE - | Farararrse| ! !
W3LE B fo Y| Aararaeas: 1 |
WAoo = =]
Host CPU GPU

Figure 8. N'" Training Iteration in GS-Scale with Selec-
tive Offloading and Parameter Forwarding. M.S.Q refers to
mean/scale/quaternion.

4.2.2 Breaking Data Dependency via Parameter For-
warding. After selective offloading, optimizer updates be-
come the primary bottleneck. To mitigate this overhead, we
introduce a pipelined training scheme, enabling concurrent
execution of forward/backward passes on GPU and optimizer
updates on CPU. Typically, such pipelining is not feasible
due to the data dependency since updated parameters are
needed for the next training iteration’s forward pass.

We identify a unique opportunity offered by 3D Gaussian
Splatting training workloads. Each training iteration requires

Donghyun Lee, Dawoon Jeong, Jae W. Lee, and Hongil Yoon

GPU |_Fwd-Bwd

Time

(a) GPU-Only

GPU
i To T, !

CPU | Frustum Culling -{ Update

(b) Baseline GS-Scale

6P | Fwd-Bway JEide. oz
i To' Ty T, Ts'
cpu et Updatey_; J[opten)
Pipelined Execution (C) GS-Scale (a” w/o Deferred Update)

cPU (Upd. J(Upd. J(Upd] ---
Comm.

iT T, Ty
daten {,(Updat
CPU ﬁgﬁ;g ﬂ{Deferred UpdateN_l] >[& Hazg”]

(d) GS-Scale (all optimizations)

Time

Time

Time

RN i | GRS SN

Speedup

Figure 9. Execution Timeline of GPU-Only, Baseline GS-
Scale, and GS-Scale with optimizations. H2D and D2H denote
Host to Device and Device to Host transfers. M.S.Q. refers
to mean/scale/quaternion.

only a small subset of parameters corresponding to Gaus-
sians within the viewing frustum of the next training image.
We exploit this with parameter forwarding, which performs
early updates of only the parameters needed for the next it-
eration on the CPU and forwards the updated parameters to
the GPU. Remaining parameters are updated asynchronously
on the CPU in a lazy manner, enabling pipelining with for-
ward/backward passes on GPU.

Figure 8 demonstrates the detailed working example of
GS-Scale with both selective offloading and parameter for-
warding. The memory state snapshot of Figure 8 (T, T}, T,
and T;) corresponds to timestamps on the execution time-
line of Figure 9c. We assume that the forward and backward
propagation for visible Gaussians #1 and #3 are complete
as a part of the (N — 1)*" training iteration. Their gradients
(G1 and G3) have been generated and stored in host memory
at T;. Due to selective offloading, the geometric parameters
have already been updated on the GPU, whereas the non-
geometric parameters on the CPU have not yet been updated.
The frustum culling operation for the N*/ training iteration
is also complete, identifying visible Gaussians #1 and #2
and assigning 1 and 2 to valid_ids. These valid_ids are
used for the forward and backward propagation of the N**
training iteration.

@ Parameter forwarding updates only the parameters re-
quired for the current iteration (W1 and W2) by using the cor-
responding gradient (G1) from the previous iteration; G2 is
zero at this point. @ The updated parameters are transferred
to the GPU via PCle; CPU-side copies of the parameters and

GS-Scale : Unlocking Large-Scale 3D Gaussian Splatting Training via Host Offloading

optimizer states remain unchanged (¢t = T;). To mitigate
the transfer overhead, parameters are partitioned into 32MB
chunks, enabling pipelined execution between CPU-side op-
timizer updates and host-to-device transfers. The execution
timeline in Figure 9c illustrates this scheme. @) Once trans-
ferred, the GPU executes forward/backward passes using
these parameters and geometric parameters (mean, scale,
quaternion of Gaussian #1 and #2) already on the GPU via
selective offloading. @ Since geometric parameters and the
corresponding optimizer states always reside in the GPU,
they are immediately updated after the forward/backward
pass (t = T]). @ Concurrently (¢ = T}), remaining param-
eters and their optimizer states, including non forwarded
ones to the GPU, are lazily updated on the CPU, minimizing
GPU idle time. Note that this optimizer process is a part of
the (N — 1)*" training iteration. @ Once the GPU-side geo-
metric parameters are updated, frustum culling is performed
using the updated parameters and the next training image,
identifying the visible Gaussians for the (N + 1)*" iteration.
@ Finally, gradients of non-geometric parameters are trans-
ferred back to CPU and held until the CPU completes its
optimizer updates (t = T;).

4.3 Deferred Optimizer Update

While parameter forwarding enables pipelining between
CPU and GPU, a slow CPU-based optimizer can still domi-
nate overall execution, as shown in Figure 9c. This is mostly
due to low CPU memory bandwidth and Adam optimizer’s
inefficiency (updating all states and parameters, even those
with zero gradients). To further accelerate the CPU-based
Adam optimizer without algorithmic changes, we propose
deferred optimizer update. Although we use Adam as an ex-
ample, deferred optimizer update can be extended to most
momentum-based optimizers, such as SGD (stochastic gradi-
ent descent) with momentum, AdamW [41] and Lion [10].

4.3.1 Optimization Opportunities. We can defer updates
for parameters and optimizer states with zero gradients be-
cause their values can be precisely reconstructed by tracking
deferred iterations. This is due to momentum based opti-
mizer’s deterministic behavior when gradients are zero, as
shown in Adam’s example (Equation 1). If gradient g; is zero,
momentum and variance m; and v; are simply scaled by f;
and f,, respectively.

. m

me = Pime_y + (1= B)gr, 1y = — 7

1-p

2 Ut
0 = fovrr + (1= Ba)gy, O = T (1)
1-4;
Wil = Wi — AW iy
Vo, +e

This property enables us to restore current optimizer
states (m; and v;) from deferred optimizer states (m;_4_; and
U¢—g-1, t > d) and the defer count d. If the gradient remains
zero for d consecutive iterations and becomes non-zero at

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

iteration ¢, momentum and variance can be reconstructed
by simply multiplying scaling factors as follows:

my = ,3‘1”1 Mmy—q-1+ (1= p1)g:
N——
m_scale

d+1 2

o= Py Va1 + (1= f2)g;
N——
v_scale

@

Parameter w; can also be restored from deferred parameter
w;_q, momentum m;_g_1, and variance v;_g_; by repeatedly
applying the weight update d times:

d-1
- 1 ;
Wi =Wi—d — Y My_d+l
=0 VUi—d+l +€
d-1 I+1
w Z n ,Bl my_d-1
=Wig — .
t—d+1
= [Poa ‘e 1-p
1_ﬁ£—d+l (3)
d-1 I+1
~wig Mi—d-1 Z U 1
X Wi_g — .
t—d+1
Vi—g-1+€ = ﬁé“ 1-— 'Bl
17ﬁ57d+l
w_scale

Assuming that € is small, we can factor out m;_4_; and
vt—4-1, making the remaining expression (i.e., w_scale) a
precomputable constant, which simplifies weight restoration.
Note that € is typically a very small constant introduced to
prevent divide-by-zero errors and this approximation has
negligible effect on training, which we substantiate in Sec-
tion 5.5. Finally, the restored w;, m;, and v; are used to pro-
duce final weight w4, with the original Adam rule.

4.3.2 Implementation. We propose the deferred optimizer
update, which defers updates for Gaussians not involved in
forward and backward propagation. Instead of immediate
updates, a 4-bit counter increments for deferred updates, al-
lowing up to 15 deferrals. Parameters and optimizer states are
restored only when their corresponding gradient becomes
non-zero or the counter reaches its maximum. Even with
conservative estimates, this results in only 6.7% (1/15) un-
necessary updates due to counter saturation. In practice, on
the Rubble scene, only 2.29% of Gaussians hit the maximum
deferral count, with an average deferral count of 5.03.
Figure 10 details the pseudocode. A set of Gaussians to
be updated (update_ids) is determined as the union of those
with nonzero gradients (valid_ids) and those whose counter
has reached MAX (Line 11). Three scaling factors for param-
eter and optimizer state restoration are precomputed and
stored in lookup tables for each deferred step d (Line: 14-23),
following the equations in Section 4.3.1. For each Gaussian
in update_ids, its defer count is read (Line 29), scaling fac-
tors are retrieved (Line: 30-32), parameters and states are
reconstructed (Line: 34-40), and the standard Adam update

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

1

2

3 float param[N][D], grad[N][D], mom[N][D], var[N][D];
4 char counter[N]; int MAX = 15;

5 float lr, bl, b2, eps;
6
7
8
9

def deferred_update(vector<int> valid_ids[n], int step):

10 vector<int> update_ids;
11 update_ids = union(valid_ids, where(counter == MAX));

14 float param_lut[MAX], mom_lut[MAX], var_lut[MAX];
15 float scale = bl / sqrt(b2);

16 param_lut[0] = 0;

17 for i = 1 to MAX:

18 param_lut[i] = scalexparam_lut[i—1] +

19 (Lrxbl) / (sqrt(b2/(1l-pow(b2, step-i)))
20 * (1 — pow(bl, step-i)));

21 for i = 0 to MAX:

22 mom_lut[i] = pow(bl, i+1);

23 var_lut[i] = pow(b2, i+l);

24

25

26 float bias_correction = sqrt(l — pow(b2, step));
27 float step_size = lr / (1 — pow(bl, step));

28 for id in update_ids:

29 float delay = counter[id];

30 float w_scale = param_lut[delay];

31 float m_scale = mom_lut[delay];

32 float v_scale = var_lut[delay];

33 for k = 0 to D:

34 float w = param[id][k]; float g = grad[id][K];
35 float m = mom[id][k]; float v = var[id][k];

36 float m_new = m_scalexm + (1-bl)xg;

37 float v_new = v_scalexv + (1-b2)x*gx*g;

38 mom[id][k] = m_new;

39 var[id] [k] = v_new;

40 w -= (w_scale * m) / (sqrt(v) + eps);

41 float denom = sqrt(v) / bias_correction + eps;
42 param[id][k] = w - step_size * m_new / denom;

45 for id = 0 to N:

46 counter[id] += 1;
47 for id in update_ids:
48 counter[id] = 0;

Figure 10. Pseudocode of Deferred Optimizer Update.

is applied (Line: 41-42). Counters for updated Gaussians are
then reset, while deferred ones increment by 1 (Line: 45-48).

Deferred optimizer update significantly reduces memory
accesses, proportional to the ratio of used to total Gaussians,
while incurring minimal overhead (2.7% of the total). Each
counter lookup/update requires a single 8-bit memory access
(char datatype) per Gaussian. However, a full optimizer up-
date requires 7D *32-bit accesses per Gaussian (4D reads and
3D writes for parameters, gradients, and optimizer states,
where D is parameter dimension, i.e., 59; refer to Line 33-
42). Parameter and optimizer state restoration adds some
computation but incurs no additional memory accesses (Line
40), thus having little impact on overall execution time, as
optimizer updates are primarily memory-bound.

4.3.3 Integration to GS-Scale. Deferred optimizer update
integrates into the GS-Scale pipeline with minor adjustments
to parameter forwarding. Since forwarded parameters must

Donghyun Lee, Dawoon Jeong, Jae W. Lee, and Hongil Yoon

Table 1. Specifications of GPU Platforms

GPU GPU Memory PCle Host Memory R
Size | BW | BW [Size | BW bw
Laptop
RTX 4070M [8 GB | 256 GB/s [16 GB/s [32 GB | 83.2GB/s | 3.1
Desktop
RTX 40808 [16 GB [736 GB/s [32 GB/s | 64 GB | 89.6 GB/s | 8.2
Server

H100 80GB [80 GB [2.04 TB/s [64 GB/s | 1TB [6144 GB/s | 33

be accurate, weight restoration is performed before forward-
ing the parameters. Neither CPU-stored original parameters
nor counters are modified during this parameter forwarding
process (@ in Figure 8), while they are updated in the actual
CPU optimizer update process (@ in Figure 8).

4.4 Balance-Aware Image Splitting Training

Even with GS-Scale’s significant GPU memory savings, peak
memory usage is bound by the maximum number of Gaus-
sians from the most demanding training image. To address
such cases, we propose balance-aware image splitting train-
ing. When the ratio of active to total Gaussians exceeds a
predefined threshold mem_limit, an image is spatially parti-
tioned into two sub-regions, each processed separately. Each
sub-region undergoes independent frustum culling, followed
by separate forward and backward passes to compute indi-
vidual losses and gradients. The gradients are transferred
to CPU immediately after they are computed and are later
aggregated on the CPU, mitigating GPU memory pressure.
Optimizer update is applied once for both regions using the
aggregated gradients on the CPU, ensuring mathematical
equivalence to the original training pipeline. Splitting a de-
manding image into two can halve memory usage during for-
ward/backward passes, preserving memory savings. While
more splits are possible, two sufficed in our benchmarks.
Finding an optimal split point is critical to balance Gauss-
ian counts, as naive equal-area splitting often leads to im-
balance due to varying Gaussian density. Our balance-aware
image splitting strategy, applied once before training using
the initial 3D Gaussians, addresses this. We efficiently bal-
ance counts by starting at the image midpoint, performing
frustum culling on both sides, and then iteratively adjusting
the split toward the less-populated side via a 5-step binary
search. This process adds only 0.08% overhead to total train-
ing time. Despite slight changes resulting from densifica-
tion, our benchmarks show an average split point ratio of
0.551:0.449, maintaining balance throughout training.

5 Evaluation
5.1 Methodology

We build GS-Scale on gsplat v1.5.0 [61], a popular PyTorch [49]
based 3D Gaussian Splatting framework, which achieves
state-of-the-art performance in terms of both training speed

GS-Scale : Unlocking Large-Scale 3D Gaussian Splatting Training via Host Offloading

Table 2. Evaluated Benchmark Scenes

Dataset [Scene [Resolution [Type
Mill-19 [57] Rgbl?le 1152 x 864 Real World & Outdoor
Building
LFLS
GauU-Scene [60] SZIT 1600 X 1064 | Real World & Outdoor
SZTU
MatrixCity [34] Aerial 1600 X 900 Synthetic

and memory usage. We implement pipelined CPU-GPU exe-
cution using Python’s threading module and deferred op-
timizer update as a custom C++ PyTorch extension with
OpenMP parallelization. Experiments are conducted primar-
ily on laptop and desktop platforms, with additional evalua-
tion on a server. We use ASUS TUF Gaming F17 laptop [4]
with Intel Core 17-13620H CPU and RTX 4070 Mobile GPU,
desktop with Intel Core i9-13900K CPU and RTX 4080 Su-
per GPU, and server with 2xIntel Xeon Gold 6530 CPU and
H100 PCIe 80GB GPU. Table 1 shows detailed specifications.
Ry, [48] denotes the ratio of GPU memory bandwidth to
that of CPU. All platforms use CUDA 12.4 and PyTorch 2.2.0.

We evaluate GS-Scale on large-scale datasets (Table 2). We
use 4X downsampled images for Mill-19 dataset and 1.6k
resolution downsampled images for the other datasets fol-
lowing previous works [39, 40, 55, 57]. We use a batch size of
1 in our experiments to remain consistent with the original
3DGS recipe, as larger batches often lead to quality loss. Fur-
thermore, 3DGS is inherently memory-intensive; we observe
that most scenes encounter Out-of-Memory (OOM) errors
even in a single-batch setting on consumer-grade GPUs (Fig-
ure 12). Notably, GS-Scale can overcome the OOM issues and
scale to larger batches through gradient accumulation (i.e.,
repeating single-batch forward/backward passes before a
single optimizer update), while preserving GS-Scale’s mem-
ory saving advantages. We use three standard visual quality
metrics: Peak Signal-to-Noise Ratio (PSNR), Structural Simi-
larity Index Measure (SSIM), and Learned Perceptual Image
Patch Similarity (LPIPS), where higher PSNR/SSIM and lower
LPIPS indicate better quality. GPU peak memory usage is
measured via PyTorch CUDA Memory Management APIs'.

We adjust densification settings (i.e., stop iteration, densifi-
cation threshold, and split/clone decision threshold) to scale
up or scale down Gaussian counts for each scene, following
the Grendel’s methodology [65]. A mem_limit of 0.3 is used
for all experiments, splitting images when active Gaussians
exceed 30% of the total.

5.2 Memory Savings

We evaluate GS-Scale’s memory savings against the GPU-
Only system. Figure 11 demonstrates that GS-Scale achieves

1GPU peak memory is measured based on allocated memory. Since PyTorch
maintains reserved memory pools larger than the allocated memory, OOM
errors may occur before allocated memory hits the GPU memory capacity.

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

GPU-Only Wl GS-Scale

5\50
e
x
o] % 40
O @
0 30
52D
o >20
° ‘g 0.18x |
10 0.26x P I .18x
Qo 0.30x 0.28x . 0.26x 0.25x
= — = i

o

Rubble Building LFLS SZIT SZTU Aerial

Figure 11. Peak GPU Memory Usage Savings with GS-Scale.

a substantial 3.98X geomean reduction in peak memory us-
age across all datasets. Note that the memory reduction is
independent of GPU type. The memory savings correlate
with the ratio of used to total Gaussians, explaining the great-
est improvement in the Aerial scene. Further reduction is
limited in the Aerial scene despite its low used Gaussian
ratio because 17% of parameters and optimizer states remain
resident on the GPU due to selective offloading.

5.3 Training Throughput and Memory Efficiency

Figure 12 evaluates training throughput across four systems:
(1) baseline GS-Scale, (2) GS-Scale with all optimizations
except deferred optimizer update, (3) GS-Scale with all opti-
mizations, and (4) GPU-Only system without host offloading.
Six scenes are evaluated across laptop and desktop platforms
and training speed is measured in epoch time. We make
smaller versions of each scene by adjusting densification set-
tings to enable throughput comparisons. However, we could
not create a smaller version that fits into GPU memory for
the Aerial scene, as its Gaussian count is already too large
at initialization. Since our downsizing strategy [65] relies on
limiting densification, scenes that trigger OOM errors before
densification cannot be further downsized.

GPU-only system frequently encounters OOM errors due
to limited memory, but GS-Scale’s significant memory sav-
ings enable much larger-scale 3DGS training. For instance,
the Aerial scene alone demands over 50GB of GPU mem-
ory without host offloading (Section 5.2), causing OOM on
both GPU-only systems. However, GS-Scale reduces peak
GPU memory usage by 5.5%, allowing the Aerial scene to
be trained on an RTX 4080 Super desktop. Furthermore, GS-
Scale achieves comparable training throughput to GPU-Only
systems, reaching geomean of 1.22X (laptop) and 0.84x (desk-
top) of GPU-Only performance (excluding OOM cases). A
takeaway is that GS-Scale enables much larger scene training
and consistently maintains high training throughput, even as
GPU-Only systems frequently encounter OOM errors.

5.4 Impact of Proposed Optimizations

Figure 12 shows how GS-Scale’s optimizations improve the
training throughput over the baseline GS-Scale. We see a

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

Donghyun Lee, Dawoon Jeong, Jae W. Lee, and Hongil Yoon

Baseline GS-Scale W GS-Scale (all w/o deferred optimizer update) W GS-Scale (all optimizations) B8 GPU-Only

»)

Normalized
Training Throughput
N

Small Small Small Small Small
Laptop (RTX 4070 Mobile)

o) o) 000 o) O 0000 O o) o) o)
O O o000 o) O 0000 O O O O

0 Rubb. Rubb.|Build. Build.|LFLS LFLS |SZIIT SZIIT |SZTU SZTU|Aerial|Rubb. Rubb.|Build. Build.|LFLS LFLS|SzZIT SZIT|SZTU SZTU |Aerial

9.86 7 |

Small Small Small Small Small
Desktop (RTX 4080 Super)

Figure 12. Training Throughput Normalized to Baseline GS-Scale.

geomean improvement of 4.47X on laptop and 4.57x on desk-
top (excluding OOM cases), demonstrating GS-Scale’s effec-
tiveness. The performance of GS-Scale depends on two key
factors: (1) the GPU to CPU memory bandwidth ratio (Rp.,)
and (2) the average ratio of used to total Gaussians (Figure 4).
PCle bandwidth also has some effect (higher PCle bandwidth
benefits GS-Scale), but its impact is limited as it accounts
for only a small portion of the training time. We also find
that CPU-GPU co-execution incurs minimal interference
and scheduling overhead (0.8% slowdown). On platforms
with lower Ry, (like laptops), GS-Scale can perfectly pipeline
CPU optimizer updates with GPU execution, even surpassing
GPU-Only speeds where operations are executed sequen-
tially. This is because lower GPU memory bandwidth slows
down the memory bound backward pass (i.e., gradient accu-
mulation) on GPU, providing enough time for CPU updates
to be pipelined. Furthermore, a lower ratio of used to total
Gaussians amplifies the benefits of the deferred optimizer
update, as memory access reduction scales with this ratio,
explaining the notable speedups in Aerial and LFLS scenes.

5.5 Training Quality Impact of GS-Scale

The only approximation in GS-Scale is ignoring the € term
in the deferred optimizer update for factoring out momentum
and variance terms. To analyze its impact, we compare the
rendering quality of models trained with the original method
and with GS-Scale. Table 3 shows this approximation has
negligible impact on rendering quality, confirming that GS-
Scale maintains the rendering quality of the trained models
as in the original training pipeline.

To further stress-test the approximation, we also conduct
experiments under extreme optimizer configurations with
increased € and f,. Because the degree of approximation
grows with larger € and f, these settings amplify the po-
tential error. Table 4 demonstrates that quality change is
marginal even under extreme configurations (e.g., € = 10™*
and f, = 0.99999). Furthermore, such configurations are
atypical in practice and perform substantially worse than
the default settings (¢ = 107'° and f, = 0.999), substanti-
ating that the approximation in GS-Scale is robust for all
realistic training scenarios.

Table 3. Impact of GS-Scale on Training Quality.

Scene | Method | PSNR' | ssiM! | Lpips!
Original 26.63 0.808 0.194
Rubble GS-Scale 26.62 0.808 0.194
o Original 22.74 0.777 0211
Building GS-Scale 22.78 0.777 0.211
LFLS Original 24.04 0.752 0.234
GS-Scale 24.08 0.752 0.233
Original 26.28 0.797 0213

SZIT

GS-Scale 26.29 0.797 0.213
Original 24.90 0.835 0.155
SZTU GS-Scale 24.95 0.836 0.155
erial Original 27.69 0.873 0.127
GS-Scale 27.66 0.873 0.128

Table 4. Sensitivity to Optimizer Configurations. Default
setting is € = 1071 and 8, = 0.999. Rubble scene is used.

Config | Method | PSNR!T | ssiM! | LPIps!
Original 26.63 0.808 0.194
Default GS-Scale 26.62 0.808 0.194
=108 Original 26.72 0.814 0.188
- GS-Scale 26.61 0.814 0.188
- 104 Original 20.58 0.462 0.800
B GS-Scale 20.72 0.466 0.792
B Original 25.91 0.788 0.215
P2 = 09999 GS-Scale 25.32 0.775 0.234
Original 24.66 0.746 0.265
Pr = 0.99999 GS-Scale 24.26 0.739 0.279

5.6 Improved Scalability and Rendering Quality

Leveraging its memory savings discussed in Section 5.2, GS-
Scale enables training with substantially more Gaussians
under the same GPU memory budget, leading to higher ren-
dering quality. We assess this by examining rendering quality
changes with increasing Gaussian counts. Figure 13 demon-
strates that more Gaussians consistently yield higher PSNR
and SSIM and lower LPIPS, indicating better rendering and
reconstruction quality. The figure also shows GS-Scale ex-
tends the maximum Gaussians scaling across different plat-
forms and systems. On a laptop with RTX 4070 Mobile GPU,
GS-Scale scales the number of Gaussians from 4 million to

GS-Scale : Unlocking Large-Scale 3D Gaussian Splatting Training via Host Offloading

—e— Rubble —#— Building

—&— LFLS

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

—— SZIIT —¥— SZTU

, GPU-Only (RTX 4070M)
ERT)T(407OM :
i e 'RTX4080S

GPU-Only (RTX 4080S)
: i RT); 4070M :
: v :RTX 4080S

GS-Scale (RTX 4070M) GS-Scale (RTX 4080S)

JRTX4070M»:

RTX'4080S

0 10M 20M 30M 40M 0 10M
Number of Gaussians

20M
Number of Gaussians

10M 20M 30M 40M
Number of Gaussians

30M 40M 0

Figure 13. Evaluation of GS-Scale’s Rendering Quality and Scalability Across Gaussian Scales.

GPU-Only BN GS-Scale

N
=}

e
o

Normalized
Training Throughput
& 5

o
o

Rubble Building LFLS SZIT SZTU Aerial

Figure 14. Training Throughput on Server Platform.

18 million, achieving geomean 2.6% PSNR and 5.1% SSIM
increases, and a 28.7% LPIPS decrease. On a desktop with
RTX 4080 Super GPU, it scales the number of Gaussians
from 9 million to 40 million, resulting in geomean 1.6% PSNR
and 3.6% SSIM increases, and 30.5% LPIPS decrease. These
results substantiate that the scalability of GS-Scale directly
translates into higher rendering quality across platforms.

5.7 Evaluation on Server Platform

Although GS-Scale is primarily designed for laptop and desk-
top platforms, we also evaluate it on server platform with
H100 GPU to demonstrate its broader applicability. The re-
sults on server shown in Figure 14 follows a similar trend
with laptop and desktop platforms, while substantial speedup
is achieved on Aerial scene thanks to the large speedup gain
from deferred optimizer update as discussed in Section 5.3.
We also observe that the overall training throughput nor-
malized to GPU-only on the server is relatively lower than
that of laptop despite having a similar Ry,, value. This is
because the server consists of two NUMA nodes. Even with
data evenly distributed across NUMA nodes, the low locality
due to random memory accesses in deferred optimizer update
makes it relatively harder for NUMA-based servers to reach
the peak CPU memory bandwidth compared to single-node
laptop architectures.

5.8 Training Cost vs. Multi-GPU System

To evaluate the practical benefits of GS-Scale for service
providers hosting 3DGS training workloads, we compare

Table 5. Training Cost Comparison of GS-Scale and Grendel.

System l GCP Instance l Price/hr l Train Time l Cost
GS-Scale (1 GPU) | g2-standard-12 $1.00 7.05h $7.05
Grendel (1 GPU) | g2-standard-12 $1.00 OOM OOM
Grendel (2 GPU) | g2-standard-24 | $2.00 4.46h $8.92
Grendel (4 GPU) | g2-standard-48 $4.00 2.46h $9.84

its cost efficiency against multi-GPU systems. For a fair
comparison, we evaluate GS-Scale against the Grendel [65]-
integrated version of gsplat, a state-of-the-art distributed
training framework for 3DGS. All experiments are conducted
on Google Cloud Platform (GCP) using the Aerial scene.
While GS-Scale runs on a single L4 GPU instance, Grendel
requires multi-GPU instances (2 and 4 L4 GPUs) because it ex-
ceeds the memory budget of a single L4. As shown in Table 5,
GS-Scale reduces training costs by 27% and 40% compared
to 2-GPU and 4-GPU Grendel configurations, respectively.
This cost advantage stems from Grendel’s sub-linear per-
formance scaling; its 2-GPU and 4-GPU setups yield only
1.58% and 2.86x speedups, significantly degrading overall
cost efficiency.

5.9 Sensitivity Study

Sensitivity to mem_limit. Figure 15a and 15b demonstrate
how GPU memory usage and training throughput changes
with varying mem_limit thresholds. We can save more GPU
memory by decreasing this threshold at the cost of slower
training throughput. This is because a smaller mem_limit
lowers the maximum number of visible Gaussians and in-
creases the fraction of images that must be split, as shown
in the figure. Slowdown results from the additional frus-
tum culling and gradient accumulation required by image
splitting. In our experiments, we use mem_limit of 0.3 to
prioritize training throughput over memory savings.

Sensitivity to GPU. Figure 15¢ shows GS-Scale’s training
throughput on additional desktop GPUs (RTX 4070 Super,
RTX 4090). Higher Ry, values on RTX 4090 (Rp,, = 11.3 VS.
Ry, = 5.6 on RTX 4070 Super) with greater GPU memory

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

B Memory
—#— Gaussian Count

I Throughput
—=&— Split Image Ratio

s GPU-Only
I GS-Scale

3 2ME & 0.8 = 1.5
- 3 é_ 10.0 k-] _§.
P~ O o~ S oo
om) 060y B
ggz 5 5@7.5 o g51.0
n < [oE=
so ME £ 250 048 B
281 T 2E = 5205
o> O E£<=25 0.2% zz
< £ c
g O | %) ©
M= 0 0.0

00330201 0030201 20

mem_limit

RTX RTX RTX

4070S 4080S 4090
(a) (b) (©)

mem_limit

Figure 15. (a), (b) Sensitivity to mem_limit on Rubble scene.
(c) Sensitivity to GPU on LFLS scene. Desktop is used.

s GPU-Only I GS-Scale
=
3
° 2_1.00
38 8207
g3 8gom
© ©
e £ 050
£Eo £
o £ O c
Zo Zc025
= s
'_

0.00

1K 2K 4K
Image Resolution

Image Resolution

(a) (b)

Figure 16. Impact of Image Resolution on Memory Usage
and Throughput on Desktop for Rubble Scene.

bandwidth (1.01 TB/s VS. 504.2 GB/s) explains its lower nor-
malized throughput of GS-Scale compared to GPU-Only. We
also conduct a controlled sensitivity test on Ry,, by adjust-
ing the CPU memory channel count. When Ry, doubles (by
halving the channels) on RTX 4070 setup, performance drops
from a 1.29%x speedup to a 1.09% slowdown.

Sensitivity to Image Resolution. Figure 16 shows that
GPU memory savings slightly decrease as training image
resolution increases since growing activation memory (Fig-
ure 3b) reduces the relative portion of offloadable parameters,
optimizer states, and gradients. Conversely, relative train-
ing throughput increases. This is because higher resolutions
slow down the GPU-based forward/backward pass, provid-
ing more time slack for pipelining CPU-based optimizer
updates.

5.10 Comparison with Other Algorithmic Solutions

While GS-Scale focuses on system-level optimizations, sev-
eral prior works aim to reduce GPU memory usage during
3DGS training through algorithmic techniques. In this sec-
tion, we compare GS-Scale with these approaches from both
qualitative and quantitative perspectives.

Comparison with Divide-and-Conquer Methods. Nu-
merous divide-and-conquer approaches [26, 32, 37, 39, 40, 55]
enable memory efficient 3DGS training by partitioning a

Donghyun Lee, Dawoon Jeong, Jae W. Lee, and Hongil Yoon

Table 6. Comparison with Divide-and-Conquer Methods.

Scene | System | Train Time | PSNR | ssiM' | LPIPS!
Rubble GS-Scale 4.18h 26.94 0.822 0.173
CityGaussian 6.01h 25.95 0.813 0.231
Building | GSScale 472h 2294 | 0792 | 0188
€ CityGaussian 11.62 h 22.00 0.783 0.244

3DGS (6.7M) MCMC (4M) Taming-GS (2M)
GS-Scale (6.7M) MCMC (4M) + GS-Scale @ Reduced-GS (3.1M)
26.8
26.6 * @ GS-Scale w/o degradation .
® Lower Quality due to
¥ 26.4 compression or pruning
z [
o 26.2 @GS-Scale
*wlo degradataion.
26.0
25'82 4 6 8 10

GPU Training Memory Usage (GB)

Figure 17. Comparison with Pruning and Compression
Methods. Rubble scene is used.

large scene into smaller chunks, training each chunk inde-
pendently, and then merging the results. While these ap-
proaches effectively reduce GPU memory usage, they are
inherently inefficient due to quality degradation at chunk
boundaries. We compare GS-Scale against CityGaussian [39],
a representative divide-and-conquer method. For a fair com-
parison, we follow the training configuration reported in
the original paper and tune the number of Gaussians in
GS-Scale to closely match that of CityGaussian (9.64M and
12.70M in GS-Scale vs. 9.66M and 13.11M in CityGaussian
for Rubble and Building scene respectively). As shown in
Table 6, GS-Scale substantially outperforms CityGaussian
in both training time (measured on desktop) and rendering
quality, highlighting that preserving the original end-to-end
3DGS training pipeline can be more effective than divide-
and-conquer methods.

Comparison with Pruning and Compression Methods.
We also compare GS-Scale with pruning and compression
methods that reduce GPU memory usage during 3DGS train-
ing, including Taming-GS [43], Reduced-GS [47], and 3DGS-
MCMC [27]. We include 3DGS-MCMC, although it is not
explicitly designed as a training-efficiency method, because
its improved densification strategy enables comparable ren-
dering quality while using fewer Gaussians. Figure 17 sum-
marizes the trade-off between memory usage and rendering
quality across these methods. Overall, pruning and com-
pression techniques substantially reduce the GPU memory
footprint, but the savings typically come at the cost of de-
graded rendering quality (@), whereas GS-Scale achieves
memory savings without sacrificing quality (). Moreover,
these techniques are orthogonal to GS-Scale: our memory

GS-Scale : Unlocking Large-Scale 3D Gaussian Splatting Training via Host Offloading

reduction depends on the ratio of visible Gaussians to the
total number of Gaussians, which can remain small even
after pruning. To demonstrate the complementarity, we ap-
ply GS-Scale on top of 3DGS-MCMC, achieving additional
memory reduction while preserving rendering quality (@).

6 Related Work

Acceleration on 3D Gaussian Splatting Rendering. Sev-
eral works have been proposed to accelerate 3DGS rendering
through both software optimizations [15, 16, 21, 23, 36, 52,
56, 66] and specialized accelerators [17, 31, 33, 38, 58, 62].
For software-only solutions, GS-Cache [56] reduces redun-
dant computations via caching data across frames, com-
bined with an efficient scheduler and optimized GPU kernels.
FlashGS [16] eliminates unnecessary computations via a
precise intersection test and improves GPU utilization by
overlapping memory access with computation. For hardware
accelerators, GSCore [31] introduces the first dedicated accel-
erator for 3DGS, eliminating sorting and rasterization for un-
necessary Gaussians through algorithm-hardware co-design.
Lumina [17] also mitigates sorting and rasterization bottle-
necks by sharing sorting results across frames and caching
previous rendering results via hardware support. MetaSapi-
ens [38] adopts efficiency-aware pruning and foveated ren-
dering, co-designed with a specialized accelerator to enable
real-time rendering.

Acceleration on 3D Gaussian Splatting Training. 3DGS
training suffers from large amount of atomic operations
during gradient accumulation and various works [13, 14,
22, 35, 43] have been proposed to address this bottleneck.
DISTWAR [14] accelerates atomic operations by enabling
warp-level reduction and leveraging L2 atomic units (ROP
units). ARC [13] further addresses atomic bottlenecks by
introducing specialized hardware unit for atomic operations.
GSArch [22] reduces both off-chip and on-chip memory ac-
cesses in 3DGS training through gradient pruning and on-
chip memory access rearrangement.

Scaling 3D Gaussian Splatting. Recent works have tack-
led the challenges in large scale 3DGS training via both
algorithm level and system level solutions. Most algorithm-
level approaches [26, 32, 37, 39, 40, 55] follow a divide-and-
conquer strategy: partitioning the 3D scene into smaller
chunks, training them independently, and later merging the
results. While this avoids out-of-memory errors, it funda-
mentally alters the original 3DGS training recipe and often
results in rendering quality degradation, as discussed in Sec-
tion 5.10. Another line of work [12, 27, 42, 43, 47] focuses on
reducing GPU memory usage via pruning and compression
of Gaussians. While effective in lowering memory usage,
these methods are generally not designed for large-scale
3DGS training and typically incur noticeable losses in ren-
dering quality. Grendel [65] is the first framework to enable

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

large-scale 3DGS training without modifying the original
3DGS algorithm. By addressing GPU load imbalance and
inter-GPU communication overhead in a distributed setting,
Grendel supports efficient training with tens of millions of
Gaussians. Importantly, Grendel shows that simply support-
ing the original 3DGS pipeline alone leads to substantially
faster training and superior rendering quality compared to
divide-and-conquer methods, highlighting the importance
of system-level solutions in 3DGS training.

Host Offloading in Machine Learning Workloads. Sev-
eral host offloading techniques have been studied in other
domains including large language model (LLM) training [50,
51], LLM inference serving [28, 46], and deep learning recom-
mendation model (DLRM) training [7, 30]. Zero-Offload [51]
offloads LLM parameters and optimizer states to host mem-
ory and adopts layer-wise parameter prefetching to save
GPU memory in LLM training. While this is conceptually
similar to GS-Scale, Zero-Offload prefetches all parameter
set from CPU memory, providing limited memory savings
when applied to 3DGS training. LIA [28] improves LLM serv-
ing efficiency by offloading portions of GPU computation
to high-end CPUs, while ScratchPipe [30] enables memory-
efficient DLRM training by prefetching soon-to-be-accessed
embeddings from CPU to GPU. These methods, however,
rely on workload-specific properties, and thus do not di-
rectly transfer to 3DGS training.

7 Conclusion

3D Gaussian Splatting offers high visual quality and fast ren-
dering speed, but its training demands significant GPU mem-
ory. GS-Scale resolves this by offloading Gaussians to host
memory, transferring only necessary subsets to the GPU on
demand, greatly reducing GPU memory usage. GS-Scale also
optimizes CPU-based frustum culling and optimizer updates
through selective offloading, parameter forwarding, and a
deferred optimizer update. Experiments show GS-Scale saves
GPU memory demands by 3.3%-5.6X, maintaining training
throughput comparable to GPU-only systems. This enables
GS-Scale to facilitate much larger-scale 3DGS training on
commodity GPUs, achieving geomean 28.7% and 30.5% LPIPS
improvement on an RTX 4070 Mobile GPU and RTX 4080
Super GPU respectively.

Acknowledgments

This work was supported by the Ministry of Science and
ICT (MSIT), Korea, under the Global Scholars Invitation Pro-
gram (RS-2024-00456287) supervised by the Institute for
Information & Communications Technology Planning &
Evaluation (IITP). Additional support was provided by a
research grant from Samsung Electronics and the Google
Faculty Research Award. The source code is available at
https://github.com/SNU-ARC/GS-Scale.git. Jae W. Lee and
Hongil Yoon are the corresponding authors.

https://github.com/SNU-ARC/GS-Scale.git

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

References

[1] 2022. Design better buildings, together. https://www.arkio.is.
[2] 2022. Metaverse 3D models. https://sketchfab.com/tags/metaverse.
[3] 2023. 3D Gaussian Splatting: Create and view splats for free. https:

[12

[13

[14

[15

[16

[17

(18

[t

—

—

=

]

—

—

—

//poly.cam/tools/gaussian-splatting.

2023. ASUS TUF Gaming F17. https://www.asus.com/laptops/for-
gaming/tuf-gaming/asus-tuf-gaming-f17-2023.

2025. Virtual Tours: Explore properties and spaces from anywhere in
the world. https://www.realhorizons.in/tours.

2025. Your invitation to explore the world in 3D. https://scaniverse.
com.

Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan,
and Prashant J. Nair. 2022. Accelerating recommendation system
training by leveraging popular choices. Proc. VLDB Endow. (2022).
Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su.
2022. TensoRF: Tensorial Radiance Fields. In European Conference on
Computer Vision (ECCV).

Jianchuan Chen, Jingchuan Hu, Gaige Wang, Zhonghua Jiang, Tian-
song Zhou, Zhiwen Chen, and Chengfei Lv. 2025. TaoAvatar: Real-
Time Lifelike Full-Body Talking Avatars for Augmented Reality via 3D
Gaussian Splatting. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang,
Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu,
and Quoc V. Le. 2023. Symbolic discovery of optimization algorithms.
In Advances in Neural Information Processing Systems (NeurIPS).
Nianchen Deng, Zhenyi He, Jiannan Ye, Budmonde Duinkharjav, Pra-
neeth Chakravarthula, Xubo Yang, and Qi Sun. 2022. FoV-NeRF:
Foveated Neural Radiance Fields for Virtual Reality. In IEEE Transac-
tions on Visualization and Computer Graphics.

Sankeerth Durvasula, Sharanshangar Muhunthan, Zain Moustafa,
Richard Chen, Ruofan Liang, Yushi Guan, Nilesh Ahuja, Nilesh Jain,
Selvakumar Panneer, and Nandita Vijaykumar. 2025. ContraGS:
Codebook-Condensed and Trainable Gaussian Splatting for Fast,
Memory-Efficient Reconstruction. In IEEE/CVF International Confer-
ence on Computer Vision (ICCV).

Sankeerth Durvasula, Adrian Zhao, Fan Chen, Ruofan Liang,
Pawan Kumar Sanjaya, Yushi Guan, Christina Giannoula, and Nandita
Vijaykumar. 2025. ARC: Warp-level Adaptive Atomic Reduction in
GPUs to Accelerate Differentiable Rendering. In ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

Sankeerth Durvasula, Adrian Zhao, Fan Chen, Ruofan Liang,
Pawan Kumar Sanjaya, and Nandita Vijaykumar. 2024. DISTWAR:
Fast Differentiable Rendering on Raster-based Rendering Pipelines.
arXiv preprint arXiv:2401.05345 (2024).

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and
Zhangyang Wang. 2024. LightGaussian: Unbounded 3D Gaussian
Compression with 15x Reduction and 200+ FPS. In Advances in Neural
Information Processing Systems (NeurIPS).

Guofeng Feng, Siyan Chen, Rong Fu, Zimu Liao, Yi Wang, Tao Liu,
Boni Hu, Linning Xu, Zhilin Pei, Hengjie Li, Xiuhong Li, Ninghui Sun,
Xingcheng Zhang, and Bo Dai. 2025. FlashGS: Efficient 3D Gaussian
Splatting for Large-scale and High-resolution Rendering. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Yu Feng, Weikai Lin, Yuge Cheng, Zihan Liu, Jingwen Leng, Minyi
Guo, Chen Chen, Shixuan Sun, and Yuhao Zhu. 2025. Lumina: Real-
Time Neural Rendering by Exploiting Computational Redundancy. In
ACM/IEEE International Symposium on Computer Architecture (ISCA).
Linus Franke, Laura Fink, and Marc Stamminger. 2025. VR-Splatting:
Foveated Radiance Field Rendering via 3D Gaussian Splatting and
Neural Points. Proc. ACM Comput. Graph. Interact. Tech. (PACMCGIT)
(2025).

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Donghyun Lee, Dawoon Jeong, Jae W. Lee, and Hongil Yoon

Stephan]J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton,
and Julien Valentin. 2021. FastNeRF: High-Fidelity Neural Rendering
at 200FPS. In IEEE/CVF International Conference on Computer Vision
acecv).

Junfu Guo, Yu Xin, Gaoyi Liu, Kai Xu, Ligang Liu, and Ruizhen Hu.
2025. ArticulatedGS: Self-supervised Digital Twin Modeling of Articu-
lated Objects using 3D Gaussian Splatting. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Alex Hanson, Allen Tu, Vasu Singla, Mayuka Jayawardhana, Matthias
Zwicker, and Tom Goldstein. 2025. PUP 3D-GS: Principled Uncer-
tainty Pruning for 3D Gaussian Splatting. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Houshu He, Gang Li, Fangxin Liu, Li Jiang, Xiaoyao Liang, and Zhuo-
ran Song. 2025. GSArch: Breaking Memory Barriers in 3D Gaussian
Splatting Training via Architectural Support. In IEEE International
Symposium on High Performance Computer Architecture (HPCA).

Qiqi Hou, Randall Rauwendaal, Zifeng Li, Hoang Le, Farzad
Farhadzadeh, Fatih Porikli, Alexei Bourd, and Amir Said. 2025. Sort-
free Gaussian Splatting via Weighted Sum Rendering. In International
Conference on Learning Representations (ICLR).

Ying Jiang, Chang Yu, Tianyi Xie, Xuan Li, Yutao Feng, Huamin Wang,
Minchen Li, Henry Lau, Feng Gao, Yin Yang, and Chenfanfu Jiang.
2024. VR-GS: A Physical Dynamics-Aware Interactive Gaussian Splat-
ting System in Virtual Reality. In ACM Transactions on Graphics (SIG-
GRAPH).

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George
Drettakis. 2023. 3D Gaussian Splatting for Real-Time Radiance Field
Rendering. In ACM Transactions on Graphics (SSIGGRAPH).

Bernhard Kerbl, Andréas Meuleman, Georgios Kopanas, Michael Wim-
mer, Alexandre Lanvin, and George Drettakis. 2024. A Hierarchical
3D Gaussian Representation for Real-Time Rendering of Very Large
Datasets. In ACM Transactions on Graphics (SSGGRAPH).

Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Weiwei Sun,
Jeff Tseng, Hossam Isack, Abhishek Kar, Andrea Tagliasacchi, and
Kwang Moo Yi. 2024. 3D Gaussian Splatting as Markov Chain Monte
Carlo. In Advances in Neural Information Processing Systems (NeurIPS).
Hyungyo Kim, Nachuan Wang, Qirong Xia, Jinghan Huang, Amir
Yazdanbakhsh, and Nam Sung Kim. 2025. LIA: A Single-GPU LLM
Inference Acceleration with Cooperative AMX-Enabled CPU-GPU
Computation and CXL Offloading. In ACM/IEEE International Sympo-
sium on Computer Architecture (ISCA).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Sto-
chastic Optimization. In International Conference on Learning Repre-
sentations (ICLR).

Youngeun Kwon and Minsoo Rhu. 2022. Training personalized rec-
ommendation systems from (GPU) scratch: look forward not back-
wards. In ACM/IEEE International Symposium on Computer Architecture
(ISCA).

Junseo Lee, Seokwon Lee, Jungi Lee, Junyong Park, and Jaewoong Sim.
2024. GSCore: Efficient Radiance Field Rendering via Architectural
Support for 3D Gaussian Splatting. In ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems.

Bingling Li, Shengyi Chen, Luchao Wang, Kaimin He, Sijie Yan, and
Yuanjun Xiong. 2024. RetinaGS: Scalable Training for Dense Scene Ren-
dering with Billion-Scale 3D Gaussians. arXiv preprint arXiv:2406.11836
(2024).

Chaojian Li, Sixu Li, Linrui Jiang, Jingqun Zhang, and Yingyan Celine
Lin. 2025. Uni-Render: A Unified Accelerator for Real-Time Rendering
Across Diverse Neural Renderers. In IEEE International Symposium on
High Performance Computer Architecture (HPCA).

Yixuan Li, Lihan Jiang, Linning Xu, Yuanbo Xiangli, Zhenzhi Wang,
Dahua Lin, and Bo Dai. 2023. MatrixCity: A Large-scale City Dataset
for City-scale Neural Rendering and Beyond. In IEEE/CVF International

https://www.arkio.is
https://sketchfab.com/tags/metaverse
https://poly.cam/tools/gaussian-splatting
https://poly.cam/tools/gaussian-splatting
https://www.asus.com/laptops/for-gaming/tuf-gaming/asus-tuf-gaming-f17-2023
https://www.asus.com/laptops/for-gaming/tuf-gaming/asus-tuf-gaming-f17-2023
https://www.realhorizons.in/tours
https://scaniverse.com
https://scaniverse.com

GS-Scale : Unlocking Large-Scale 3D Gaussian Splatting Training via Host Offloading

(35]

(36]

(37]

(38]

(39]

(40]

[41

—

(42]

[43

—_

[44]

(45

=

[46]

(47

—

(48

—

Conference on Computer Vision (ICCV).

Kaimin Liao, Hua Wang, Zhi Chen, Luchao Wang, and Yaohua Tang.
2025. LiteGS: A High-performance Framework to Train 3DGS in
Subminutes via System and Algorithm Codesign. arXiv preprint
arXiv:2503.01199 (2025).

Zhimeng Liao, Xinyang Li, Shaohui Liu, Jiakai Zhang, Xian Liu, Yikai
Wang, Ying Feng, Xiaoxiao Long, Shuguang Cui, and Wenping Wang.
2024. EAGLES: Efficient Accelerated 3D Gaussians with Lightweight
Encodings. In European Conference on Computer Vision (ECCV).

Jiaqi Lin, Zhihao Li, Xiao Tang, Jianzhuang Liu, Shiyong Liu, Jiayue Liu,
Yangdi Lu, Xiaofei Wu, Songcen Xu, Youliang Yan, and Wenming Yang.
2024. VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Weikai Lin, Yu Feng, and Yuhao Zhu. 2025. MetaSapiens: Real-Time
Neural Rendering with Efficiency-Aware Pruning and Accelerated
Foveated Rendering. In International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS).
Yang Liu, He Guan, Chuanchen Luo, Lue Fan, Naiyan Wang, Junran
Peng, and Zhaoxiang Zhang. 2024. CityGaussian: Real-time High-
quality Large-Scale Scene Rendering with Gaussians. In European
Conference on Computer Vision (ECCV).

Yang Liu, Chuanchen Luo, Zhongkai Mao, Junran Peng, and Zhaoxiang
Zhang. 2025. CityGaussianV2: Efficient and Geometrically Accurate
Reconstruction for Large-Scale Scenes. In International Conference on
Learning Representations (ICLR).

Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay
Regularization. In International Conference on Learning Representations
(ICLR).

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua
Lin, and Bo Dai. 2024. Scaffold-gs: Structured 3d gaussians for view-
adaptive rendering. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Francisco Vi-
cente Carrasco, Markus Steinberger, and Fernando De La Torre. 2024.
Taming 3DGS: High-Quality Radiance Fields with Limited Resources.
In SIGGRAPH Asia 2024 Conference Papers.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T.
Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing
Scenes as Neural Radiance Fields for View Synthesis. In European
Conference on Computer Vision (ECCV).

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller.
2022. Instant Neural Graphics Primitives with a Multiresolution Hash
Encoding. In ACM Transactions on Graphics (SIGGRAPH).

Seonjin Na, Geonhwa Jeong, Byung Hoon Ahn, Aaron Jezghani, Jeffrey
Young, Christopher J. Hughes, Tushar Krishna, and Hyesoon Kim.
2025. FlexInfer: Flexible LLM Inference with CPU Computations. In
Proceedings of Machine Learning and Systems (MLSys).

Panagiotis Papantonakis, Georgios Kopanas, Bernhard Kerbl, Alexan-
dre Lanvin, and George Drettakis. 2024. Reducing the Memory Foot-
print of 3D Gaussian Splatting. In ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games (I3D).

Yeonhong Park, Jake Hyun, Hojoon Kim, and Jae W. Lee. 2025. DecDEC:
A Systems Approach to Advancing Low-Bit LLM Quantization. In
USENIX Symposium on Operating Systems Design and Implementation
(OSDI).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems (NeurIPS).

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and
Yuxiong He. 2021. ZeRO-infinity: breaking the GPU memory wall
for extreme scale deep learning. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC).

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji
Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He.
2021. ZeRO-Offload: Democratizing Billion-Scale Model Training. In
USENIX Annual Technical Conference (USENIX ATC 21).

Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu, Zhangkai Ni,
and Bo Dai. 2025. Octree-GS: Towards Consistent Real-time Rendering
with LOD-Structured 3D Gaussians. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) (2025).

Manuel-Andreas Schneider, Lukas Hoéllein, and Matthias Niefiner. 2025.
WorldExplorer: Towards Generating Fully Navigable 3D Scenes. arXiv
preprint arXiv:2506.01799 (2025).

Noah Snavely, Steven M. Seitz, and Richard Szeliski. 2006. Photo
tourism: exploring photo collections in 3D. In ACM Transactions on
Graphics (SIGGRAPH).

Mai Su, Zhongtao Wang, Huishan Au, Yilong Li, Xizhe Cao, Chengwei
Pan, Yisong Chen, and Guoping Wang. 2025. HUG: Hierarchical Urban
Gaussian Splatting with Block-Based Reconstruction for Large-Scale
Aerial Scenes. In IEEE/CVF International Conference on Computer Vision
acev).

Miao Tao, Yuanzhen Zhou, Haoran Xu, Zeyu He, Zhenyu Yang,
Yuchang Zhang, Zhongling Su, Linning Xu, Zhenxiang Ma, Rong Fu,
Hengjie Li, Xingcheng Zhang, and Jidong Zhai. 2025. GS-Cache: A
GS-Cache Inference Framework for Large-Scale Gaussian Splatting
Models. arXiv preprint arXiv:2502.14938 (2025).

Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. 2022.
Mega-nerf: Scalable construction of large-scale nerfs for virtual fly-
throughs. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Linye Wei, Jiajun Tang, Fan Fei, Boxin Shi, Runsheng Wang, and
Meng Li. 2025. No Redundancy, No Stall: Lightweight Streaming 3D
Gaussian Splatting for Real-time Rendering. In International Conference
on Computer-Aided Design (ICCAD).

Nan Wu, Weikai Lin, Ruizhi Cheng, Bo Chen, Yuhao Zhu, Klara Nahrst-
edt, and Bo Han. 2025. Advancing Immersive Content Delivery with
Dynamic 3D Gaussian Splatting. In Proceedings of the 26th International
Workshop on Mobile Computing Systems and Applications.

Butian Xiong, Zhuo Li, and Zhen Li. 2024. GauU-Scene: A Scene
Reconstruction Benchmark on Large Scale 3D Reconstruction Dataset
Using Gaussian Splatting. arXiv preprint arXiv:2401.14032 (2024).
Vickie Ye, Ruilong Li, Justin Kerr, Matias Turkulainen, Brent Yi,
Zhuoyang Pan, Otto Seiskari, Jianbo Ye, Jeffrey Hu, Matthew Tan-
cik, and Angjoo Kanazawa. 2024. gsplat: An Open-Source Library for
Gaussian Splatting. arXiv preprint arXiv:2409.06765 (2024).

Zhifan Ye, Yonggan Fu, Jingqun Zhang, Leshu Li, Yongan Zhang, Sixu
Li, Cheng Wan, Chenxi Wan, Chaojian Li, Sreemanth Prathipati, and
Yingyan Celine Lin. 2025. Gaussian Blending Unit: An Edge GPU
Plug-in for Real-Time Gaussian-Based Rendering in AR/VR. In IEEE
International Symposium on High Performance Computer Architecture
(HPCA).

Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Ben-
jamin Recht, and Angjoo Kanazawa. 2022. Plenoxels: Radiance Fields
without Neural Networks. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

Hongjia Zhai, Xiyu Zhang, Boming Zhao, Hai Li, Yijia He, Zhaopeng
Cui, Hujun Bao, and Guofeng Zhang. 2025. SplatLoc: 3D Gaussian
Splatting-based Visual Localization for Augmented Reality. IEEE Trans-
actions on Visualization and Computer Graphics (TVCG) (2025).

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA Donghyun Lee, Dawoon Jeong, Jae W. Lee, and Hongil Yoon

[65] Hexu Zhao, Haoyang Weng, Daohan Lu, Ang Li, Jinyang Li, Aurojit [66] Brent Zoomers, Maarten Wijnants, Ivan Molenaers, Joni Vanherck,
Panda, and Saining Xie. 2025. On Scaling Up 3D Gaussian Splat- Jeroen Put, Lode Jorissen, and Nick Michiels. 2025. PRoGS: Progres-
ting Training. In International Conference on Learning Representations sive Rendering of Gaussian Splats. In IEEE/CVF Winter Conference on

(ICLR). Applications of Computer Vision (WACV).

	Abstract
	1 Introduction
	2 Background
	2.1 Novel View Synthesis
	2.2 Neural Radiance Fields (NeRF)
	2.3 3D Gaussian Splatting
	2.4 Training Pipeline of 3D Gaussian Splatting

	3 Motivation
	3.1 Scaling Challenges in 3D Gaussian Splatting
	3.2 Memory Bottleneck Analysis in Training
	3.3 Opportunities of Host Offloading
	3.4 Challenges in Host Offloading

	4 GS-Scale Design
	4.1 Baseline GS-Scale with Host Offloading
	4.2 GS-Scale Optimizations
	4.3 Deferred Optimizer Update
	4.4 Balance-Aware Image Splitting Training

	5 Evaluation
	5.1 Methodology
	5.2 Memory Savings
	5.3 Training Throughput and Memory Efficiency
	5.4 Impact of Proposed Optimizations
	5.5 Training Quality Impact of GS-Scale
	5.6 Improved Scalability and Rendering Quality
	5.7 Evaluation on Server Platform
	5.8 Training Cost vs. Multi-GPU System
	5.9 Sensitivity Study
	5.10 Comparison with Other Algorithmic Solutions

	6 Related Work
	7 Conclusion
	References

